

Erapol XLE90A

POLYETHER (PTMEG) TDI PREPOLYMER –
LOW FREE TDI CONTENT

TECHNICAL DATASHEET

Erapol XLE90A is a new generation of liquid isocyanate terminated prepolymer based on 100% PTMEG polyether polyol with the added benefit of extremely low free isocyanate.

Polymers made from **Erapol XLE90A** exhibit outstanding abrasion, impact and chemical resistance, along with high load bearing capacity and low heat build-up in dynamic applications.

Additionally, **Erapol XLE90A** has a low free TDI content (less than 0.1%) - low viscosity and long pot life make processing easy.

Application

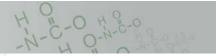
Typical uses of this polymer include forklift truck tyres, roles and gears, die pads etc.

Product Specification

% NCO	4.50 ± 0.20		
Specific Gravity at 77°F (25°C)	1.03		
Viscosity at 176°F (80°C) (cps)	400 – 700		
Color	Clear, light amber		

Mixing and Curing Conditions

	HHHH	XLE90A / MOCA	XLE90A / Ethacure 300
Erapol XLE90A	(pph)	100	100
MOCA Level	(pph)	13.6	///////////
Ethacure 300 Level	(pph)	XXIII <i>IIIII - 73733</i> 3	10.9
Recommended % Theory		95	95
Erapol Temperature	°F (°C)	167 – 185 (75 – 85)	167 – 176 (75 – 80)
Curative Temperature	°F (°C)	230 – 248 (110 – 120)	68 – 86 (20 – 30)
Pot Life	(mins)	14	8
Demould Time at 212°F (100°C)	(mins)	30	20
Post Cure Time at 212°F (100°C)	(hrs)	16	16


Note: pph MOCA and Ethacure 300 are 95% theory based on midpoint NCO.

This information is of general nature and is supplied without recommendation of guarantee. It does not make claim to be free from patent infringement. Properties shown are typical and do not imply specification tolerances. Era Polymers cannot accept liability for loss or damage through use. Whilst these technical details are based on expert knowledge, practical experience and laboratory testing, successful application depends upon the nature and conditions in which the products are supplied. Users must, by comprehensive testing, evaluate this product in their own application.

Version 2.0 Date of Issue: 15 December 2017 Page 1 of 2

Physical Properties

Properties presented below are to be used as a guide and not intended for specification purposes.

		XLE90A / MOCA	XLE90A / E300*	TEST METHOD
Hardness	(Shore A)	90	90	ASTM D2240
Tensile Strength	psi (MPa)	4873 (33.6)	4815 (33.2)	ASTM D412
100% Modulus	psi (MPa)	1233 (8.5)	1233 (8.5)	ASTM D412
200% Modulus	psi (MPa)	1827 (12.6)	1726 (11.9)	ASTM D412
300% Modulus	psi (MPa)	2872 (19.8)	2495 (17.2)	ASTM D412
Elongation	(%)	425	480	ASTM D412
Angle Tear, Die C	pli (kN/m)	450 (78.8)	481 (84.3)	ASTM D624
Split Tear	pli (kN/m)	112 (19.7)	110 (19.2)	ASTM D470-05
Bashore Rebound	(%)	53	55	ASTM D2632
DIN Abrasion Resistance	10N (mm ³)	53	65	ASTM D5963
Compression Set / 22 hr	at 70°C (%)	20	34	ASTM D395, B
Cured Specific Gravity	(g/cm ³)	1.09	1.08	ASTM D1817

^{*}Ethacure 300

Processing Procedure

- 1. **Erapol XLE90A** should be heated to $167 185^{\circ}F$ ($80 \pm 5^{\circ}C$) and thoroughly degassed at -95kpa of vacuum until excessive foaming stops.
- 2. The curative should be added to **XLE90A**, the MOCA must first be melted at 230 248°F (110 120°C) and Ethacure 300 processed at room temperature. After adding the curative, mix thoroughly being careful not to introduce air into the mixture.
- 3. Pour mixed materials into molds, which have been preheated to 212°F (100°C) and precoated with release agent.

Handling Precautions

Erapol XLE90A contains small amounts of free TDI. Therefore the product should be used in well-ventilated areas. Avoid breathing in vapors and protect skin and eyes from contact.

In case of skin contact, immediately remove excess, wash with soap and water. For eye contact, immediately flush with water for at least 15 minutes. Call a physician.

If nose, throat or lungs become irritated from breathing in vapors, remove exposed person to fresh air. Call a physician.

This information is of general nature and is supplied without recommendation of guarantee. It does not make claim to be free from patent infringement. Properties shown are typical and do not imply specification tolerances. Era Polymers cannot accept liability for loss or damage through use. Whilst these technical details are based on expert knowledge, practical experience and laboratory testing, successful application depends upon the nature and conditions in which the products are supplied. Users must, by comprehensive testing, evaluate this product in their own application.

Version 2.0 Date of Issue: 15 December 2017 Page 2 of 2