

ERAPOL EME215/41A POLYOL

Era Polymers Pty Ltd

Version No: **1.3**Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: 01/04/2016 Print Date: 01/04/2016 Initial Date: 01/04/2016 S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	ERAPOL EME215/41A POLYOL
Synonyms	Not Available
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Polyurethane curative

Details of the supplier of the safety data sheet

Registered company name	Era Polymers Pty Ltd
Address	25-27 Green Street NSW 2019 Australia
Telephone	+61 (0)2 9666 3788
Fax	+61 (0)2 9666 4805
Website	www.erapol.com.au
Email	erapol@erapol.com.au

Emergency telephone number

Association / Organisation	CHEMWATCH
Emergency telephone numbers	Not Available
Other emergency telephone numbers	Not Available

CHEMWATCH EMERGENCY RESPONSE

Primary Number	Alternative Number 1	Alternative Number 2
1800 039 008	+612 9186 1132	Not Available

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	S5
Classification [1]	Acute Toxicity (Oral) Category 4
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Label elements

GHS label elements

SIGNAL WORD WARNING

Hazard statement(s)

Version No: 1.3 Page 2 of 10 Issue Date: 01/04/2016 Print Date: 01/04/2016

ERAPOL EME215/41A POLYOL

H302	Harmful if swallowed.		
Precautionary statement(s) Prevention			
P101	If medical advice is needed, have product container or label at hand.		
P102	Keep out of reach of children.		
P103	Read label before use.		
P264	Wash all exposed external body areas thoroughly after handling.		
P270	Do not eat, drink or smoke when using this product.		

Precautionary statement(s) Response

P301+P312	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.	
P330	Rinse mouth.	

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501

Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
13674-84-5	30-60	tris(2-chloroisopropyl)phosphate
27236-65-3	<1	bis(phenylmercury) dodecenylsuccinate
Not Available	to 100	All other substances non hazardous

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye	Contact

If this product comes in contact with the eyes:

- ▶ Wash out immediately with fresh running water.
- ► Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin or hair contact occurs:

- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

▶ Other measures are usually unnecessary.

Inhalation

▶ IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.

If fumes, aerosols or combustion products are inhaled remove from contaminated area.

- ▶ For advice, contact a Poisons Information Centre or a doctor.
- Urgent hospital treatment is likely to be needed.
- ▶ In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's
- condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Ingestion

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise

▶ INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

Indication of any immediate medical attention and special treatment needed

For acute and short term repeated exposures to anyl and alkylmethoxy compounds of mercury: Absorption proceeds more rapidly than its inorganic counterpart but once inside the body biotransformation releases inorganic mercury. [Ellenhorn and Barceloux: Medical Toxicology]

- Moderate adsorption of inorganic mercury compounds through the gastro-intestinal tract (7-15%) is the principal cause of poisoning. These compounds are highly concentrated (as the mercuric (Hg (2+) form) in the kidney; acute ingestion may lead to oliguric renal failure. Severe mucosal necrosis may also result from ingestion.
- Chronic effects range from proteinuria to nephrotic syndrome. Chronic presentation also involves dermatitis, gingivitis, stomatitis, tremor and neuropsychiatric symptoms of erethism.
- Absorbed inorganic mercury does not significantly cross the blood-brain barrier.
- ▶ Emesis and lavage should be initiated following acute ingestion.
- Activated charcoal interrupts absorption; cathartics should be administered when charcoal is given.
- The use of British Anti-Lewisite is indicated in severe inorganic poisoning. Newer derivatives of BAL (e.g. dimercaptosuccinic acid, [DMSA] and 2,3-dimercapto-1-propanesulfate [DMPS]) may prove more effective. [Ellenhorn and Barceloux: Medical Toxicology]

Version No: 1.3 Page 3 of 10 Issue Date: 01/04/2016

ERAPOL EME215/41A POLYOL

Print Date: 01/04/2016

These represent the determinants observed in specimens from a healthy worker exposed at the Exposure Standard (ES or TLV).

Determinant Index Sampling Time Comments 1. Total inorganic mercury in urine 35 ug/gm creatinine Preshift B End of shift at end of workweek В 2. Total inorganic mercury in blood 15 ug/L

B: Background levels occur in specimens collected from subjects NOT exposed.

All persons handling organic phosphorus ester materials regularly should undergo regular medical examination with special stress on the central nervous systems. Whilst atropine or pyridine-2-aldoxime methiodide (PAM) are beneficial antidotes for acute phosphate ester poisonings, they are of little value in reversing acute or chronic neurological damage due to phosphites and some types of aryl phosphate.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ► Foam.
- ▶ Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- ▶ Alert Fire Brigade and tell them location and nature of hazard. ▶ Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Fire Fighting Avoid spraying water onto liquid pools. ▶ DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. ▶ If safe to do so, remove containers from path of fire Combustible. Slight fire hazard when exposed to heat or flame. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). Fire/Explosion Hazard May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Combustion products include; carbon dioxide (CO2) hydrogen chloride phospene phosphorus oxides (POx) other pyrolysis products typical of burning organic materialMay emit poisonous fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite.

- ▶ Collect solid residues and seal in labelled drums for disposal.
- ▶ Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Avoid all personal contact, including inhalation.

- ▶ Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Safe handling
- Prevent concentration in hollows and sumps.
- ► DO NOT enter confined spaces until atmosphere has been checked. ▶ DO NOT allow material to contact humans, exposed food or food utensils.
- ▶ Avoid contact with incompatible materials.

Version No: **1.3** Page **4** of **10** Issue Date: **01/04/2016**

ERAPOL EME215/41A POLYOL

Print Date: 01/04/2016

- ▶ When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- ► Store in original containers.
- ▶ Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
 - Store away from incompatible materials and foodstuff containers.
 - ▶ Protect containers against physical damage and check regularly for leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable contain

- ► Metal can or drum
- ▶ Packaging as recommended by manufacturer.
- ► Check all containers are clearly labelled and free from leaks.

BRETHERICK L.: Handbook of Reactive Chemical Hazards

- A number of phosphate and thiophosphate esters are of limited thermal stability and undergo highly exothermic self-accelerating decomposition reactions which may be catalysed by impurities.
- ▶ The potential hazards can be reduced by appropriate thermal control measures.

Storage incompatibility

Thermal decomposition of organophosphate esters, in the presence of trimethylolpropane or its homologues (common components of synthetic lubricants), may produce bicyclic phosphates and phosphites. These may occur be produced in as little as 5 minutes at 650 deg C. These bicyclic compounds are a class of materials with neurotoxic properties which produce convulsive seizures in test animals. The formation of these compounds does not occur, for example, in the presence of a pentaerythritol base (another common component of synthetic lubricants).

▶ Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	bis(phenylmercury) dodecenylsuccinate	Mercury, aryl compounds (as Hg)	0.1 mg/m3	Not Available	Not Available	Sk

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3	
ERAPOL EME215/41A POLYOL	Not Available	Not Available	Not Available	Not Available	
Ingredient	Original IDLH		Revised IDLH		
tris(2- chloroisopropyl)phosphate	Not Available		Not Available		
bis(phenylmercury) dodecenylsuccinate	28 mg/m3		10 mg/m3		
All other substances non hazardous	Not Available		Not Available		

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air)	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Version No: **1.3** Page **5** of **10** Issue Date: **01/04/2016**Print Date: **01/04/2016**

ERAPOL EME215/41A POLYOL

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood - local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

Safety glasses with side shieldsChemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- ▶ dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- ▶ When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- ▶ Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Hands/feet protection

WARNING: Do NOT use latex or PVC gloves

- ▶ In 1997, a researcher (Dr. Karen E. Wetterhahn) died from organic mercury poisoning, resulting from a single exposure to dimethylmercury almost a year before.
- Heavy metals and organic metal compounds, in particular, have posed special hazards in worker protection. At the time of diagnosis and before she lapsed into a vegetative state, Dr. Wetterhahn asked that her case be made known to others.

Permeation testing of the potential of transdermal exposure to dimethylmercury produced the following results*.

Glove material	Thickness in mm*	Breakthrough Time
Nitrile	0.2	0.25 minutes
Neoprene	0.8	<10 mins.
Butyl	0.33	<15 mins.
Viton	0.28	<15 mins.
Silver Shield	0.13	>240 mins.
Silver Shield & Neoprene Pair	0.7	>240 mins.

*Michael B Blayney:

Applied Occupational and Environmental Hygiene: 16, pp 233-236, 2001

* Originally quoted as mil (one mil = 0.001 inches)

Body protection

See Other protection below • Overalls.

Other protection

▶ P.V.C. apron.

► Barrier cream.

- ► Skin cleansing cream.
- ► Eye wash unit.

Thermal hazards

Not Available

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Issue Date: 01/04/2016 Version No: 1.3 Page 6 of 10 Print Date: 01/04/2016

ERAPOL EME215/41A POLYOL

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^{^ -} Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Liquid		
Physical state	Liquid	Relative density (Water = 1)	1.2
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Not Available	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled	The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious		
Ingestion	damage to the health of the individual.		
Skin Contact	Skin contact is not thought to produce harmful health effects (as classified under EC Directives using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.		
Eye	Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).		
Chronic	Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment.		
ERAPOL EME215/41A POLYOL	TOXICITY IRRITATION		

Version No: **1.3** Page **7** of **10** Issue Date: **01/04/2016**Print Date: **01/04/2016**

ERAPOL EME215/41A POLYOL

	Not Available	Not Available
	TOXICITY	IRRITATION
tris(2- chloroisopropyl)phosphate	dermal (rat) LD50: >1.29 mg/kg ^[1] Inhalation (rat) LC50: >4.6 mg/kl/4H*. ^[2]	*[Akzo Nobel] Eye (rabbit): non-irritating*
	Oral (rat) LD50: >500 mg/kg ^[1]	Skin (rabbit): mild (24 h):
bis(phenylmercury)	TOXICITY	IRRITATION
dodecenylsuccinate	Not Available	Not Available
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity extracted from RTECS - Register of Toxic Effect of chemical Substances	2.* Value obtained from manufacturer's SDS. Unless otherwise specified data

Non-chlorinated triphosphates have varying chemical, physical, toxicological and environmental properties. Blooming has been identified as a source of potential exposure (human and environmental) to triphosphate plasticisers / flame retardants. Blooming is the movement of an ingredient in rubber or plastic to the outer surface after curing. Blooming is quickened by increased temperature, and triphosphates are known to bloom from car interior plastics, TVs and computer monitors.

These substances are absorbed to various organs, particularly the liver and kidney but also the brain. Excretion is rapid and mainly in the urine. Animal testing shows that they have low to moderate acute toxicity, and do not significantly irritate the skin and eye. TCEP has caused convulsions, brain lesions and impaired performance in animal testing. These substances have not been found to cause developmental toxicity or birth defects, but may reduce fertility. Data suggests that they do not cause mutations.

Animal testing suggests that these substances, in particular TCEP, TDCPP and TDCiPP, can all cause tumours in various organs, including cancers. At high doses, they may also cause immunotoxicity.

For tris(2-chloro-1-methylethyl)phosphate (TCPP)

The flame retardant product supplied in the EU, marketed as TCPP, is actually a reaction mixture containing four isomers. The individual isomers in this reaction mixture are not separated or marketed. The individual components are never produced as such. These data are true for TCPP produced by all EU manufacturers. The other isomers in the mixture include bis(1-chloro-2-propyl)-2-chloropropyl phosphate (CAS 76025-08-6); bis(2chloropropyl)-1-chloro-2-propyl phosphate (CAS 76649-15-5) and tris(2-chloropropyl) phosphate (CAS 6145-73-9). The assumption is made that all isomers have identical properties in respect of risk assessment. The assumption is justified in part by the fact that they exhibit very similar chromatographic properties, even under conditions optimised to separate them. Predicted physicochemical properties differ to only a small extent. Chlorinated alkyl phosphate esters (particularly TCPP) were identified as possible substitutes for the fire retardant pentabromodiphenyl ether They appear to be relatively persistent substances, and there is some human health concern. Three substances in this group have been characterised to a degree and serve as a read across reference for TCPP. They include tris(2-chloroethyl)phosphate (TCEP, CAS 115-96-8), tris[2-(chloroethyl)phosphate (TCEP, CAS 115-96-8), tris 1-chloromethyl)ethyl]phosphate (TDCP, CAS 13674-87-8) and 2,2-bis(chloromethyl)trimethylene bis[bis(2-chloroethyl)phosphate] (V6, CAS 38051-10-4). Other flame retardants in this family, which do not appear as EU HPV (High Production Volume) substances, include tetrakis[2-(chloroethyl)ethylene)diphosphate (CAS 33125-86-9), tris (2,3-dichloro-1-propyl)phosphate (CAS 78-43-3, an isomer of TDCP)) Acute toxicity: The inhalation exposure studies in animals were somewhat equivocal and in general lacking in detailed information. One study yielded an LC50 of > 7 mg/L/4 hr. A limit test yielded an acute LC50 value of >4.6 mg/L/4h. No deaths occurred at this concentration. Toxic signs observed in this study, and in 2 further poorly reported studies, included mild lethargy, matted fur, acute bodyweight depression and convulsions. From the studies, it appears that TCPP is more toxic when administered whole body as aerosol than by nose-only exposure. This suggests that some of the systemic toxicity observed when TCPP is administered whole body may result from dermal or oral uptake, rather than inhalation. Therefore, it is concluded that TCPP is of low toxicity via the inhalation route.

TRIS(2-CHLOROISOPROPYL)PHOSPHATE

Studies in rats indicated that TCPP is of moderate toxicity via the oral route of exposure, with LD50 values from the better quality studies ranging from 632 mg/kg up to 4200 mg/kg, with the majority of values determined to be <2000 mg/kg. Common clinical and macroscopic signs of toxicity observed on nearly all studies included depression, ataxia, hunched posture, lethargy, laboured respiration, increased salivation, partially closed eyelids, body tremors, pilo-erection, ptosis, haemorrhagic lungs and dark liver and/or kidneys. A NOAEL of 200 mg/kg can be identified for acute oral toxicity. This is taken from a 1996 study, in which no clinical signs of toxicity were observed in animals dosed with 200 mg/kg TCPP. Based on the results of the acute oral studies, TCPP should be classified with R22, harmful if swallowed.

In a delayed neurotoxicity study conducted in hens, TCPP showed moderate toxicity. The principle effects were reduced mean body weight and food consumption, feather loss and cessation of laying. There was no evidence of inhibited plasma acetylcholinesterase or brain neurotoxic esterase enzyme levels. Therefore, there is no concern for acute delayed neurotoxicity for TCPP.

Studies in rats and rabbits indicated that TCPP is of low toxicity via the dermal route of exposure with LD50 values of >2000mg/kg.

There is an extensive database in animals, indicating that TCPP is non-irritant in the rabbit eye and skin. The lack of any substantial skin or eye irritation and the lack of irritation observed in the acute inhalation studies suggest that TCPP would be unlikely to produce significant respiratory tract irritation.

Evidence from a guinea pig study as well as from a local lymph node assay, indicates that TCPP does not possess significant skin sensitisation potential. No information is available on the respiratory sensitisation potential of TCPP.

Repeat dose toxicity: A study is available in which male and female rats were fed diets containing TCPP for 13 weeks at concentrations corresponding to mean substance intake values of up to 1349 mg/kg/day and 1745 mg/kg/day for males and females respectively. This study indicated the liver and thyroid to be the main target organs affected by TCPP. Effects observed included statistically significant increases in absolute and relative liver weights in males at all doses and females at the two highest doses, periportal hepatocyte swelling in high dose groups and mild thyroid follicular cell hyperplasia in males at all doses and females at the highest dose. Based on the increase in both absolute and relative liver weights, accompanied by mild thyroid follicular cell hyperplasia observed in males of all dose groups, a LOAEL of 52 mg/kg/day is derived and taken forward to risk characterisation. This LOAEL is taken forward in preference to the NOAEL which was identified in a 4-week study in which rats were dosed with TCPP at concentrations of 0, 10, 100 and 1000 mg/kg/day, as it was derived from a study of longer duration. The 4-week study also showed the liver as the target organ, with increased liver weight changes observed in the high dose groups, accompanied by hepatocyte hypertrophy in all high-dose males and one mild-dose male and changes in ALAT activity in high-dose animals.

A two-week study in which rats were fed diets of TCPP at concentrations corresponding to mean substance intake values of up to 1636 mg/kg/day for males and 1517 mg/kg/day for females showed no major clinical signs of toxicity. There was a significant reduction in weight gain and food consumption in high dose males during week 2, but there were no other significant findings.

In a 2-generation reproductive toxicity study in which rats were fed TCPP in the diet over two successive generations, the low-dose of 99 mg/kg for females is considered to be the LOAEL for parental toxicity. This is based on decreased body weight and food consumption seen in mid and high dose parental animals and the effects on uterus weight seen in all dosed animals. For males, a NOAEL of approximately 85 mg/kg is derived for parental toxicity, based on decreased body weights, food consumption and organ weight changes observed at mid and high dose groups. No data are available on inhalation and dermal repeated dose toxicity.

Genotoxicity: The mutagenic potential of TCPP has been well investigated in vitro. Evidence from several bacterial mutagenicity studies shows that TCPP is not a bacterial cell mutagen. TCPP was also shown to be non-mutagenic in fungi. In mammalian cell studies, TCPP did not induce forward mutations at the TK locus in L5178Y mouse lymphoma cells in one study, but in a second study, the result was considered equivocal (in the presence of rat liver S9 fraction). A confirmatory mouse lymphoma was conducted in accordance with the relevant regulatory guidelines. The results of the assay indicate that TCPP shows clastogenic activity in vitro in the presence of metabolic activation.

Version No: **1.3** Page **8** of **10** Issue Date: **01/04/2016**Print Date: **01/04/2016**

ERAPOL EME215/41A POLYOL

The main concern for TCPP is clastogenicity, owing to the clearly positive *in vitro* mouse lymphoma study. *In vivo*, TCPP was not clastogenic in a mouse bone marrow micronucleus test. TCPP did not induce an increase in chromosomal aberrations in a rat bone marrow cytogenetics assay. In order to further investigate the potential for TCPP to induce DNA damage, an *in vivo* Comet assay in the rat liver was conducted. The liver was chosen for comet analysis as TCPP caused an increased mutation frequency in the mouse lymphoma assay in the presence of S9 and also induced liver enlargement in repeat dose studies. Under the conditions of this study, TCPP did not induce DNA damage in the liver of rats treated with either 750 or 1500 mg/kg TCPP.

Overall, it is considered that TCPP is not genotoxic in vivo.

Carcinogenicity: TCPP is structurally similar to two other chlorinated alkyl phosphate esters, TDCP (tris [2-chloro-1-(chloromethyl)ethyl] phosphate) and TCEP (tris (2-chloroethyl) phosphate). TDCP and TCEP are non-genotoxic carcinogens, in vivo, and have agreed classifications of Carc Cat 3 R40. Based on the available repeat dose toxicity data for TCPP, supported by a qualitative read-across from TDCP and TCEP, there is a potential concern for carcinogenicity for TCPP by a nongenotoxic mechanism. No quantitative read-across can be performed since there are no insights into an underlying mode of action for TCEP and TDCP which would make a prediction on a relatively potency of TCPP possible. Therefore, as a reasonable worst case approach, a risk characterisation will be carried out for this end-point.

It is proposed that the effects observed in the 90-day study for TCPP are taken as a starting point for risk characterisation. If these effects were to progress to cancer, they would do so by a non-genotoxic mechanism. Therefore, it is proposed that the LOAEL of 52 mg/kg/day, identified from the 90-day study with TCPP, should be used as a basis for risk characterisation of the carcinogenicity endpoint.

Reproductive toxicity: In a two-generation reproductive toxicity study with TCPP, there were no treatment related effects in pre-coital time, mating index, female fecundity index, male and female fertility index, duration of gestation and post-implantation loss. There was no effect on sperm parameters at necropsy. In females, the length of the longest oestrus cycle and the mean number of cycles per animal were statistically significantly increased in high dose animals of both generations. A decrease in uterus weight was observed in all dosed females in F0 and in high dose females in F1. Effects were also noted on pituitary weights, significant in high dose females of both generations. A LOAEL of 99 mg/kg is derived for effects on fertility. This is based on effects on the effect on uterus weight seen in all dosed females in F0 and high dose females in F1.

Developmental toxicity: From the same study, a LOAEL of 99 mg/kg is derived for developmental toxicity. This is based on a treatment related effect on the number of runts observed in all TCPP-treated groups of the F0 generation.

In a separate study, no treatment-related effects on foetal mortality, implantation number,

resorption or foetal weight were observed following treatment of pregnant dams with TCPP. Cervical ribs and missing 13th ribs were noted at a low incidence in all treatment groups, but not in the control group. However, as a specific rib count undertaken in the 2-generation study did not reveal an increase in this effect, it is concluded that this is not toxicologically significant. Weaning rate and rearing condition were unaffected by treatment and there was no evidence of any abnormality

Alkyl esters of phosphoric acid exhibit a low to moderate acute toxicity and metabolised. From studies done on mice, they are not likely to cause gene damage or affect reproduction. However, 2-ethylhexanoic acid produced an effect on newborn rats at high doses to the pregnant female.

BIS(PHENYLMERCURY) DODECENYLSUCCINATE

No significant acute toxicological data identified in literature search.

Acute Toxicity	~	Carcinogenicity	0
Skin Irritation/Corrosion	0	Reproductivity	0
Serious Eye Damage/Irritation	0	STOT - Single Exposure	0
Respiratory or Skin sensitisation	0	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

Legend:

X - Data available but does not fill the criteria for classification

✓ – Data required to make classification available

Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Ingredient	Endpoint	Test Duration (hr)	Species	Value	Source
tris(2- chloroisopropyl)phosphate	EC50	96	Algae or other aquatic plants	1.363mg/L	3
tris(2- chloroisopropyl)phosphate	LC50	96	Fish	8.900mg/L	3
tris(2- chloroisopropyl)phosphate	EC50	96	Algae or other aquatic plants	=4mg/L	1
tris(2- chloroisopropyl)phosphate	NOEC	Not Applicable	Fish	5.2mg/L	2
tris(2- chloroisopropyl)phosphate	EC50	48	Crustacea	63mg/L	2
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data				

Mercury may occur in the environment as free mercury, Hg(0), mercury ions in salts and complexes, Hg+ and (Hg2)2+ and as organic mercury compounds. Each species has its own set of physical, chemical and toxicologic properties. In natural systems a dynamic equilibrium between soil and water mercury occurs, determined largely by the physicochemical and biological conditions which pertain.

Mercury ion is transported to aquatic ecosystems via surface run-off and from the atmosphere. It is complexed or tightly bound to both inorganic and organic particles, particularly sediments with high sulfur content. Organic acids such as fulvic and humic acids are often associated with mercury not bound to particles. Methyl mercury is produced by sediment micro-organisms, non-biologically in sediments, and by certain species of fish. The methylation of mercury by micro-organisms is the detoxification response that allows the organism to dispose of the heavy metal ions as small organometallic complexes. Methylation occurs only within a narrow pH range in which the micro-organism might exist and the rate of synthesis depends on the redox potential, composition of the microbial population, availability of Hg2+ and temperature. In addition it has been demonstrated that the livers of yellow-fin tuna and albacore produce methyl mercury results in its removal thus little methyl mercury is found in sediments. Demethylation by sediment micro-organisms also occurs at a rapid rate compared with methylation. The best conversion rate for inorganic mercury to methyl mercury under ideal conditions is less than 1.5% per month. Methyl mercury released into surface waters may also be broken down into mercury when exposed to light. Methyl mercury can be bioaccumulated by planktonic algae and fish. In fish, the rate of absorption of methyl mercury is faster than that of inorganic mercury and the clearance rate is slower resulting in high concentrations of methyl mercury in muscle tissue. The ratio of organic mercury to total mercury is generally high in fish compared with other aquatic organisms. Selenium which is also present in seawater and other seafoods readily complexes with methyl mercury and is thought to have a protective effect against the toxic action of methyl mercury. The danger of methyl mercury poisoning has been illustrated in Minimata, Japan in the late 1950s following industrial release of mercury into the bay wh

DO NOT discharge into sewer or waterways

Version No: **1.3** Page **9** of **10** Issue Date: **01/04/2016**

ERAPOL EME215/41A POLYOL

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
tris(2- chloroisopropyl)phosphate	нівн	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
tris(2- chloroisopropyl)phosphate	LOW (BCF = 4.6)

Mobility in soil

Ingredient	Mobility
tris(2- chloroisopropyl)phosphate	LOW (KOC = 1278)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging

disposal

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- ► If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- ► RE
- RecyclingDisposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- ▶ Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

TRIS(2-CHLOROISOPROPYL)PHOSPHATE(13674-84-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

BIS(PHENYLMERCURY) DODECENYLSUCCINATE(27236-65-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

Australia Hazardous Substances Information System - Consolidated Lists

National Inventory	Status
Australia - AICS	Y
Canada - DSL	N (bis(phenylmercury) dodecenylsuccinate)

Print Date: 01/04/2016

Version No: 1.3 Page **10** of **10** Issue Date: 01/04/2016 Print Date: 01/04/2016

ERAPOL EME215/41A POLYOL

Canada - NDSL	N (bis(phenylmercury) dodecenylsuccinate; tris(2-chloroisopropyl)phosphate)
China - IECSC	N (bis(phenylmercury) dodecenylsuccinate)
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	N (bis(phenylmercury) dodecenylsuccinate; tris(2-chloroisopropyl)phosphate)
Korea - KECI	N (bis(phenylmercury) dodecenylsuccinate)
New Zealand - NZIoC	Υ
Philippines - PICCS	Υ
USA - TSCA	N (bis(phenylmercury) dodecenylsuccinate)
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
tris(2- chloroisopropyl)phosphate	1244733-77-4, 13674-84-5, 16839-32-0, 98112-32-4

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index